

# **Example Projects**



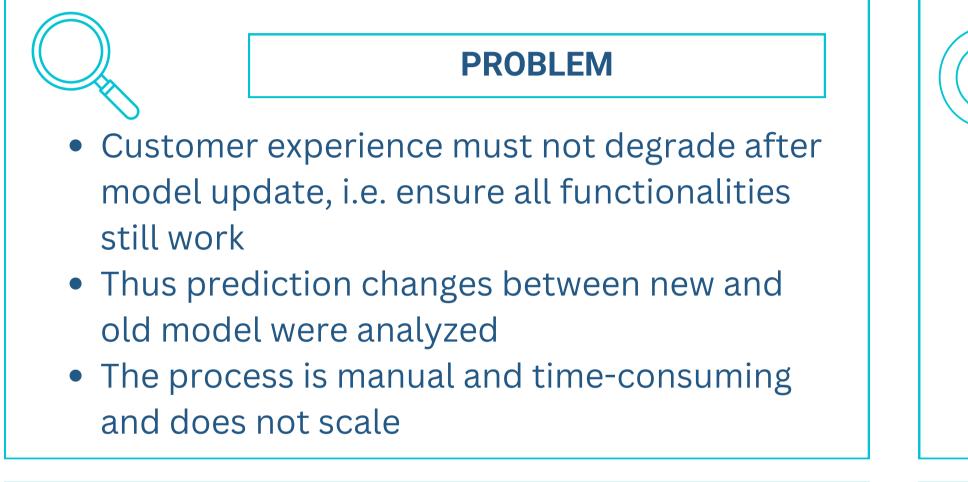
The **paper icon** in the Outcome box means a paper was published about the project, click on the icon to read the paper for more details.







## **Distillation techniques for model stability**







- flips)







#### SOLUTION

• Bias the new model towards predictions of the old on training samples where the old model gave correct predictions (reduce negative

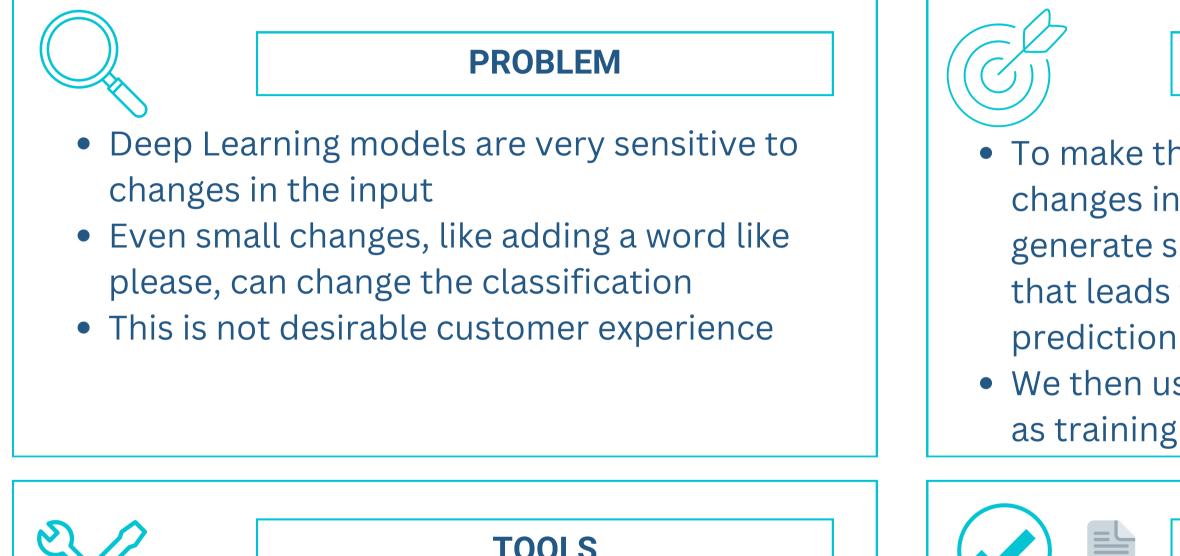
• this reduces amount of prediction changes to be analyzed

• Done through change in the loss function

#### **OUTCOME**

• reduced prediction changes by up to 55 % • approach to be rolled out in production • estimated to save 25 % of time in manual analysis

## **Model robustness and adversarial attacks**









#### SOLUTION

• To make the model more robust towards small changes in the input, we trained a T5 model to generate so called adversarial attacks, i.e. data that leads the target model towards a wrong

• We then used that generated adversarial data as training data for the production model

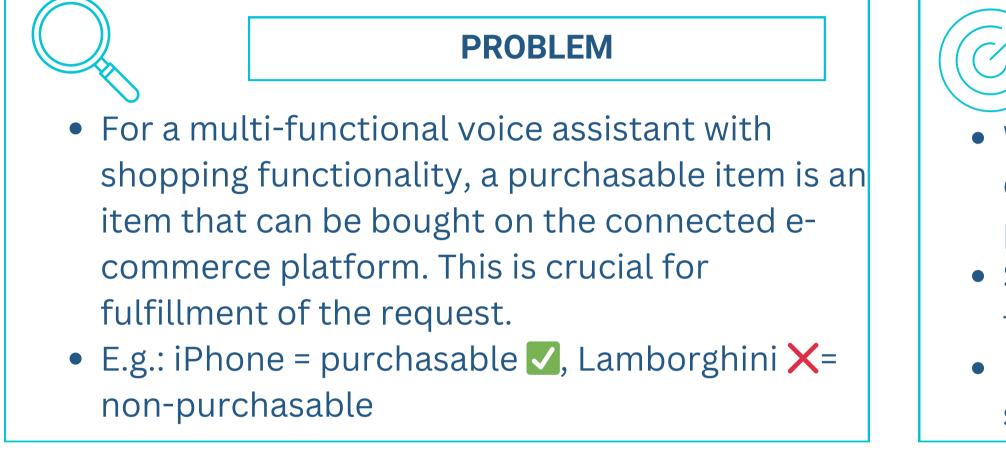


#### **OUTCOME**

• 70 % error rate reduction on adversarial test data

 reduction of customer perceived defect in online A/B test, rolled out in production

### **Purchasable item recognition**









#### **SOLUTION**

• We designed a classifier run on top of the existing system to detect whether an item is purchasable (signal goes back into system) • Semantic search is used to match the item in the request with data from the product catalog • A twin network decides if item in request is similar enough to data from product catalog

#### **OUTCOME**

• Classifier is able to correct the mistakes of existing system, increase in accuracy of 80 % • Simplified approach rolled out in production led to reduction of online defects

## **Semi-supervised Learning**

#### **PROBLEM**

- Data annotation by humans is slow and costly.
- Usually just a random sample of data is annotated, regardless of whether the model is able to correctly interpret each instance in the sample (assuming we work with a system) that is regularly updated with new data)









#### **SOLUTION**

• To speed up the annotation process, we show the annotator the model interpretation and let them verify or if needed correct it.

• As such, data is only annotated if the sample is incorrectly interpreted by the model

• Correct predictions are directly ingested as training data

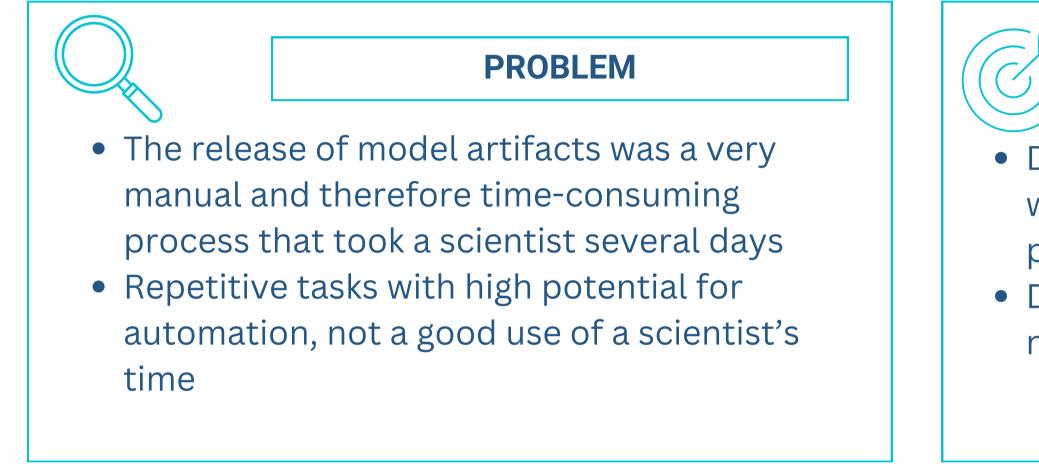
| _ |   |   |  |
|---|---|---|--|
|   | L |   |  |
|   |   | - |  |
|   |   |   |  |
| - | - |   |  |

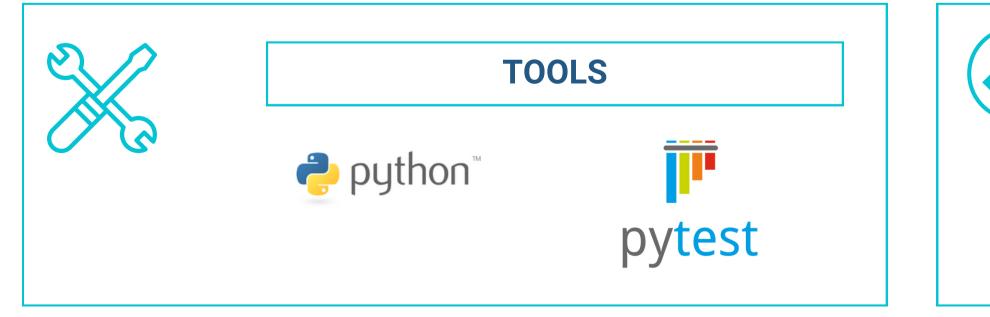
#### **OUTCOME**

 Annotation volume is reduced by 97 % and cost by 60 %

• Model performance increases due to reduced annotation inconsistencies

### **Tool for release of model artifacts**







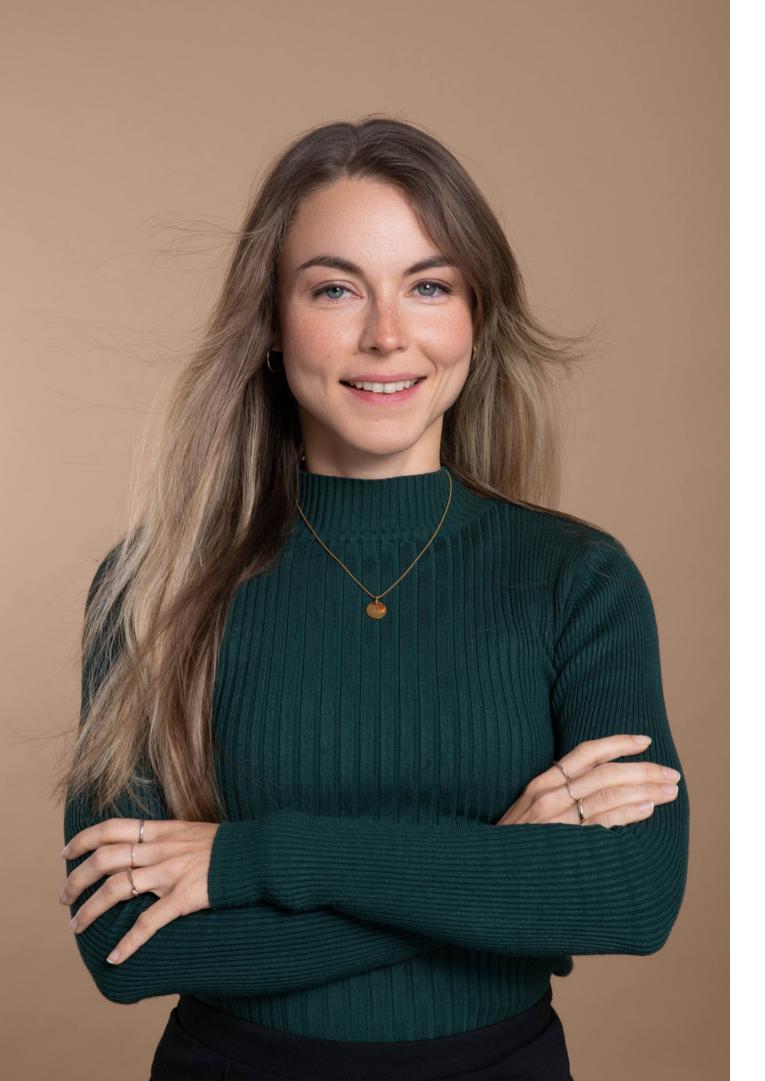
#### **SOLUTION**

 Delivered a unit-tested software package written in Python that automates the release process

• Designed and gave training for users of the new package on how to use the software

#### OUTCOME

Manual work reduced from days to hours
Due to reduced complexity, release could be transferred from scientist to role with less technical expertise





### Let's talk.

